General Algorithm: Steepest Descent (contd)

Find a starting point x(9) € D.
repeat
1. Set Ax = argmin {VTf(x(k))v | [Ivl]] = 1}.
2. Choose a step size tK) > 0 using exact or backtracking ray search.
3. Obtain x(kH1) = x(0) 4 () Ax(K).
4. Set k= k+ 1.
until stopping criterion (such as ||[VAx(k1D)|| < €) is satisfied

Figure 9: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient:descent:method (for the
SlicledianieorMIgInGrm) and the coordinate-descent method (for the L; norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.
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Algorithms: Coordinate-Descent Method

@ Corresponds exactly to the choice of L1 norm for the steepest descent method. The

steepest descent direction using the Ly norm is given by Ax = —%Xz_lu" where,
af(x = ||[VAx)||oo and u’ is defined as the unit vector pointing along the it axis.

° Thus each iteration of the coordinate descent method involves optimizing over one
component of the vector x(¥ (having the largest absolute value in the gradient vector).

Find a starting point x(9) € D.
Select an appropriate norm ||.||.
repeat

1. Let <"( 2 — || VAX||o) -
xRy
Set Ax(k) = —%’T)u .
Choose a step size tK) > (0 using exact or backtracking ray search.
Obtain x(kt1) = x(0 1 ) Ax (K.
Set k= k+ 1.

: ; T, k41 ; ifind
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Algorithms: Gradient Descent

@ This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x* as the descent direction Ax*.

@ This choice of Ax* corresponds to the direction of steepest descent under the Ly
(eucledian) norm and follows from
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Algorithms: Gradient Descent

@ This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x* as the descent direction Ax*.

@ This choice of Ax* corresponds to the direction of steepest descent under the Ly
(eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point x(9) € D
repeat
1. Set AxW = —VAx®k).
2. Choose a step size K} > 0 using exact or backtracking ray search.
3. Obtain x(k1) = x(K 4 K Ax (k)
4. Set k=k+ 1.
until stopping criterion (such as ||[VAx*t1)||y < €) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (34) resulting from Lipschitz continuity of
VAx).fly) < fix) + VT x)(y —x) + 5]y — x|
e Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (34) resulting from Lipschitz continuity of
VAx).fly) < fix) + VT x)(y —x) + 5]y — x|
e Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

KLy < fscky ko T frck k L<tk)2 K ||?
Ax') < i) — eV AX VAR + —2 | v

— xR < fxF) - (1 - %)tHVf(Xk)W t

G w

if t~k <= 1/L and hat{t} =t (fixed step)
or t~k = min{....} and hat{t} = min value

o We have (44) if....



Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (34) resulting from Lipschitz continuity of
VAx).fly) < fix) + VT x)(y —x) + 5]y — x|
e Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

e We have (44) if....
k) < ) - 2] 9t H2 (44)

» With fixed step size t =t, we ensure that 0 < t <

~i=

Question: Does it require
me to know L?
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (34) resulting from Lipschitz continuity of
VAx).fly) < fix) + VT x)(y —x) + 5]y — x|
e Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

) < fixck) — 50T XAV AxK) + L(tk) va H2

= f(Xk+1) < flx ) (1- L—tk HVf(x H

o We have (44) if....

) < i) — £ v (44)

(5] I}
v
[ (E)

> With fixed step size t* =, we ensure that 0 <t< 7 = 1—
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (34) resulting from Lipschitz continuity of
VAx).fly) < fix) + VT x)(y —x) + 5]y — x|
e Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

) < fixck) — 50T XAV AxK) + L(tk) va Hz

ket Ltk
— k) < k) - (1 - o) 9k |
o We have (44) if....
2
fxk1) < fixk) HVf H (44)
> With fixed step size t* =, we ensure that 0 <t< 7 = 1— %f > 1

» With backtracking step seach, (44) holds with t = min {1,ﬁ2ilz—ll}
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e Using convexity, we have f(x*) > f(x ) + VT AxF) (x* — x)
= f{x¥) < fix*) + VT AxF) (x* - x¥)

@ Thus,
1) < k) — $ [
— f(xk+1><f<x>+VTf(x>(x —x) —

— k1) < M) R+ 9 T (K — x°

[[x~{k+1} - x™*||~2




o Using convexity, we have f(x*) > fix¥) + VT fx¥)(x* — x¥)
— fx¥) < Ax*) + VT AX)(xF - x¥)

o Thus,
1) < fixck) — 4| 9|
> fxH) < fx) 4 9T A (k- ) — 9t |
— AxM) < fxt)+ & [xk — x H +VTHxK) (xk — x) = § Vf(xk)‘ — Llxk—x H
— AxF) < fxt) 4 L Hx ~x H Hx — x|
= fxM1) < fix*) + 2 (|x* — x* H —Hfl —-x H inequality still holds

with canonical t

— fAxM) — fix*) x*—x H H kel —X*Hz) (45)

<5l

we want to characterize the change wrt to k explicitly
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2
_ka+1 %t

e Summing (45) over all iterations (since < 0), we have

;(ﬂ x) — flx’ )_Qt(H ))

@ Thé ray® and line search ensure that {x't!) < f(x/) Vi=0,1,..., k. We thus get

®By Armijo condition in (27), for some 0 < ¢; < 1, fix'™!) < f(x') + ci 'V Ax)AX'
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2
k+1 x*

e Summing (45) over all iterations (since —Hx < 0), we have

;(ﬂ x) — fix* )_Zt(H )

@ The ray® and line search ensure that {x 1) < fx/) Vi=0,1,..., k. We thus get

e Thus, as k — oo, (xK) — f(x*). This shows convergence for gradient descent.

To ensure that f(x k) - f(x~*) <= epsilon, we need
k = O(1/epsilon) [Terrible rate/order of convergence..]

®By Armijo condition in (27), for some 0 < ¢; < 1, fix'™!) < f(x') + ci 'V Ax)AX'
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2
k+1 x*

e Summing (45) over all iterations (since —Hx < 0), we have

;(K x) — flx* )_2t<H )

@ The ray® and line search ensure that {x 1) < fx/) Vi=0,1,..., k. We thus get

e Thus, as k — oo, (xK) — f(x*). This shows convergence for gradient descent.

@ What we are more interested in however, is the rate of convergence of the gradient
descent algorithm.

®By Armijo condition in (27), for some 0 < ¢; < 1, fix) < Ax') + a1 t'VTAxHAX
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Aside: Backtracking ray search and Lipschitz Continuity

@ Recap the Backtracking ray search algorithm
» Choose a € (0,1)
» Start with t=1
» While {x + tAx) > f{x) + ¢tV Tf{x)Ax, do

* Update t + §t
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Aside: Backtracking ray search and Lipschitz Continuity [some justification

for the magical
hat{t}]

@ Recap the Backtracking ray search algorithm
» Choose a € (0,1)
» Start with t=1
» While {x + tAx) > f{x) + ¢tV Tf{x)Ax, do

* Update t + §t

On convergence, f{x + tAx) < f{x) + c1tV T f{x)Ax
For gradient descent, this means f{x + tAx) < f(x) — c1t|| VAx)|?

For a function fwith Lipschitz continuous Vf(x) we have that

-~ 2 -
AxA) < fixk) — & Vf(xk)H is satisfied if t = min {1,5&?—1)}

Reason: With backtracking step seach, if 1 — LTtk > ¢y, the Armijo rule will be satisfied.
That is, 0 < ¢k < 20
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Aside: Backtracking ray search and Lipschitz Continuity

@ Recap the Backtracking ray search algorithm
» Choose a € (0,1)
» Start with t=1
» While {x + tAx) > f{x) + ¢tV Tf{x)Ax, do

* Update t + §t

On convergence, f{x + tAx) < f{x) + c1tV T f{x)Ax
For gradient descent, this means f(x + tAx) < f(x) — c1t||VAx)||?
@ For a function fwith Lipschitz continuous Vf(x) we have that

-~ 2 -
AxA) < fixk) — & Vf(xk)H is satisfied if t = min {1,5&?—1)}

Reason: With backtracking step seach, if 1 — LTtk > ¢y, the Armijo rule will be satisfied.
. _ k . . .
That is, 0 < tk < %H—qz = 1- LTt > cy. If not, there must exist an interger j for

which 5&?_1) <p< Q—L—(lfq), we take t = min {1,5_2(1?1)}
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Rates of Convergence
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Convergence Order of convergence (generally Q convergence)

f(x")

Linear convergence

Superlinear convergence

f(x")

f(x")

Sublinear convergence

R (root) convergence and Q (quotient) convergence..
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R-convergence

@ Let us consider the convergence result we got by assuming Lipschitz continuity with
backtracking and exact line searches:

fx) — fix') < —HX(O) _ X*HQ
- 2tk

@ We will characterize this using R-convergence

@ 'R’ here stands for ‘root’, as we are looking at convergence rooted at x*

I 4 a4 March 24, 2018
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Q-convergence

e We say that the sequence s', ..., s* is R-linearly convergent |st —s*

{vk} converges Q-linearly to zero

o| vl ..., VvKis Q-linearly convergent if

[+ =],
P =

for some k> 6, and re (0,1)
» ‘Q’ here stands for 'quotient’ of the norms as shown above
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R-convergence assuming Lipschitz continuity

0|

t

[ < K where K is the final number of iterations

e Consider V% = | = % where « is a constant

@ Here, we have

> za7 <1, but we don't have g5y < r

e Thus, v = £ is not Q-linearly convergent as there exist no v < 1 s.t.

k
a/(k+1) Kk
L =S v vk>0

@ Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence

@ In practice, Lipschitz continuity gives “almost” R-linear convergence — not too bad!

e We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is,

e B L



R-convergence assuming Lipschitz continuity

0|

t

[ < K where K is the final number of iterations

e Consider V% = | = % where « is a constant

@ Here, we have

> za7 <1, but we don't have g5y < r

e Thus, v = £ is not Q-linearly convergent as there exist no v < 1 s.t.

k
a/(k+1) Kk
L =R S v vk 0

@ Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence

@ In practice, Lipschitz continuity gives “almost” R-linear convergence — not too bad!

e We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is, to obtain f({x) — fix*) < ¢, we need O(1) iterations.
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e Taking hint from this analysis, if Q-linear,

Hsk-i-l _
< re (0,1
R
then,
Hs"+1 —sf| < rHsk —s*
1
= ’2H5k ad ‘ We want to show convergen

: that is as specific as
< K| — ||, which is v for R-linear possible

@ Thus, Q-linear convergence = R-linear convergence

» Q-linear is a special case of R-linear
> R-linear gives a more general way of characterizing linear convergence

@ Q-linear is an ‘order of convergence’
ris the ‘rate of convergence'’
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@ Q-superlinear convergence:
Hsk+1 s

k=00 Hsk _ 5*H2 o

@ Q-sublinear convergence:
Hsk+1 _ &

1
k=00 Hsk _ 5*”3’
» e.g. For Lipschitz continuity, v in gradient descent is Q-sublinear: lim;_, o Fkl =1

@ Q-convergence of order p:
Hsk—l—l — g

Vk > 0, <M

Isk ="~

» e.g. p=2 for Q-quadratic, p = 3 for Q-cubic, etc.
» M is called the asymptotic error constant
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lllustrating Order Convergence

@ Consider the two sequences s; and ss.

g = [1_21 24 5L } Claim: Every element of s2 appears
So — 11 41 641 5+ 1 In 51
2= 3™ Expect s2 to converge faster

Both sequences converge to 5 However it seems that the second converges faster to 5
than the first one.

e For sy, s =5 and Q-convergence is of order p = 1 because:

k+1 * 1
HSl _Sl ’ kot 1
L= =5 <06(=M)
EREE

@ For sy, s5 =5 and Q-convergence is of order p = 2 because:

k+1 _ o 1
| O P
> = 2=—<0.6(=M)
== ==~
27 22 92F—1
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e Claim: Q-convergences of the order p are special cases of Q-superlinear convergence

o Vk> 0,
Sk+1_s=«
=T ="
H k+1 gt pe1
— lim < lim I\/IHsk—s* —0
k—o0 Hsk H k— 00

@ Therefore, irrespective of the value of M (as long as M > 0), order p > 1 implies

Q-SU erlinear convergence
P & Homework?
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Question: Could we analyze Gradient descent more specifically?

@ Assume backtracking line search
@ Continue assuming Lipschitz continuity
» Curvature is upper bounded: V2f(x) < LI

@ Assume strong convexity
» Curvature is lower bounded: V2f(x) = ml
» For instance, we might not want to use gradient descent for a quadratic function (curvature
is not accounted for)
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There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See
http://xingyuzhou.org/blog/notes/Lipschitz-gradient for a quick summary!

(Better) Convergence Using Strong Convexity
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Second Order Conditions for Convexity Homework: Understand proofs

Theorem

A twice differential function f: D — R for a nonempty open convex set D

@ s convex if and only if its domain is convex and its Hessian matrix is positive semidefinite

at each point in D. That is V?fix) =0 Vx €D

@ s strictly convex if its domain is convex and its Hessian matrix is positive definite at each

point in D. That is V?f(x) =0 Vx €D

© is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v € R" and any x € D, there exists

a ¢ > 0 such that vIV2f(x)v > ||v||?

March 24, 2018
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Proof of Second Order Conditions for Convexity
In other words
VQf(x) = clyxn

where I, is the n X n identity matrix and > corresponds to the positive semidefinite
inequality. That is, the function fis strongly convex iff V2f(x) — clnx, is positive semidefinite,

for all x € D and for some constant ¢ > 0, which corresponds to the positive minimum
curvature of f.

PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.

Necessity: Suppose fis a convex function, and consider a point x € D. We will prove that for
any h € ", h"V2f(x)h > 0. Since fis convex, we have

fix + th) > f(x) + tVf(x)h (46)

Consider the function ¢(t) = fix + th) defined on the domain Dy = [0, 1].
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

50 =3 flx+ th)%i — hT.VAx + th)

Since f has partial and mixed partial derivatives, ¢ is a differentiable function of t on Dy and
¢"(t) = h"V*f(x + th)h

Since ¢ and ¢ are continous on Dy, and ¢’ is differentiable on int(Dy), we can make use of
the Taylor's theorem with n = 3 to obtain:

8(8) = 6(0) + £(0) + £.56"(0) + O(F)

Writing this equation in terms of f gives
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

50 =3 flx+ th)%i — hT.VAx + th)

Since f has partial and mixed partial derivatives, ¢ is a differentiable function of t on Dy and
¢"(t) = h"V*f(x + th)h

Since ¢ and ¢ are continous on Dy, and ¢’ is differentiable on int(Dy), we can make use of
the Taylor's theorem with n = 3 to obtain:

H(8) = 9(0) + £4/(0) + £.56"(0) + O(F)
Writing this equation in terms of f gives
fix + th) = f(ix) + th Vf(x) + tZ%thzf(x)h + 0(t%)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (46), the above equation implies that

;hTVQf(x)h +0(t*) >0

Dividing by t? and taking limits as t — 0, we get

h"V2f(x)h > 0
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Proof of Second Order Conditions for Convexity (contd.)

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x € D.

Consider the same function ¢(t) defined above with h = y — x for y,x € D. Applying Taylor's
theorem with n = 2 and a = 0, we obtain,

B(1) = 6(0) + £(0) + £ 5'(9
for some c € (0,1). Writing this equation in terms of f gives
1) = fly) + (x — ) TVAly) + 5 (x ) Vz)(x — )
where z = y + c¢(x — y). Since D is convex, z € D. Thus, V2f(z) = 0. It follows that

flx) > fly) + (x —y) "VAy)

By a previous result, the function fis convex. 3

e March 24, 2018 156 / 195



