
General Algorithm: Steepest Descent (contd)

Find a starting point x(0) ∈ D.
repeat
1. Set ∆x(k) = argmin

{
∇Tf(x(k))v | ||v|| = 1

}
.

2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))|| ≤ ϵ) is satisfied

Figure 9: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the
eucledian or L2 norm) and the coordinate-descent method (for the L1 norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.
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Algorithms: Coordinate-Descent Method
Corresponds exactly to the choice of L1 norm for the steepest descent method. The
steepest descent direction using the L1 norm is given by ∆x = −∂f(x)

∂xi ui where,
∂f(x)
∂xi = ||∇f(x)||∞ and ui is defined as the unit vector pointing along the ith axis.
Thus each iteration of the coordinate descent method involves optimizing over one
component of the vector x(k) (having the largest absolute value in the gradient vector).

Find a starting point x(0) ∈ D.
Select an appropriate norm ||.||.
repeat
1. Let ∂f(x(k))

∂x(k)i
= ||∇f(x||∞) .

2. Set ∆x(k) = −∂f(x(k))

∂x(k)i
ui.

3. Choose a step size t(k) > 0 using exact or backtracking ray search.
4. Obtain x(k+1) = x(k) + t(k)∆x(k).
5. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))||∞ ≤ ϵ) is satisfied March 24, 2018 135 / 195



Algorithms: Gradient Descent
This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x∗ as the descent direction ∆x∗.
This choice of ∆x∗ corresponds to the direction of steepest descent under the L2
(eucledian) norm and follows from
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Algorithms: Gradient Descent
This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x∗ as the descent direction ∆x∗.
This choice of ∆x∗ corresponds to the direction of steepest descent under the L2
(eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point x(0) ∈ D
repeat
1. Set ∆x(k) = −∇f(x(k)).
2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))||2 ≤ ϵ) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.
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Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (34) resulting from Lipschitz continuity of
∇f(x).f(y) ≤ f(x) +∇⊤f(x)(y − x) + L

2∥y − x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get
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We have (44) if....

f(xk+1) ≤ f(xk)−
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∇f(xk)

2

(44)
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▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L
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Question: Does it require
me to know L?
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Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get
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We have (44) if....

f(xk+1) ≤ f(xk)−
bt
2

∇f(xk)

2

(44)

▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L =⇒ 1− L�t

2 ≥ 1
2 .

▶ With backtracking step seach, (44) holds with bt = min
{
1,β 2(1−c1)

L

}
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Using convexity, we have f(x∗) ≥ f(xk) +∇⊤f(xk)(x∗ − xk)
=⇒ f(xk) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)

Thus,
f(xk+1) ≤ f(xk)− t

2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)− t
2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(x∗)+ 1
2t

xk − x∗

2
+∇Tf(xk)(xk − x∗)− t

2

∇f(xk)

2
− 1

2t

xk − x∗

2
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Using convexity, we have f(x∗) ≥ f(xk) +∇⊤f(xk)(x∗ − xk)
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Thus,
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2
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2t(
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2
)

=⇒ f(xk+1) ≤ f(x∗) + 1
2t(

xk − x∗

2
−
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2
)
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2t(
xk − x∗


2
−
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2
) (45)
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inequality still holds
with canonical t

we want to characterize the change wrt to k explicitly
Hence we sum these inequalities until k



Summing (45) over all iterations (since −
xk+1 − x∗


2
< 0), we have

∑

i=1

(
f(xi)− f(x∗)

)
≤ 1

2t

(x(0) − x∗

2
)
)

The ray6 and line search ensure that f(xi+1) ≤ f(xi) ∀i = 0, 1, . . . , k. We thus get

6By Armijo condition in (27), for some 0 < c1 < 1, f(xi+1) ≤ f(xi) + c1ti∇Tf(xi)∆xi
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Thus, as k → ∞, f(xk) → f(x∗). This shows convergence for gradient descent.

6By Armijo condition in (27), for some 0 < c1 < 1, f(xi+1) ≤ f(xi) + c1ti∇Tf(xi)∆xi
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To ensure that f(x^k) - f(x^*) <= epsilon, we need
k = O(1/epsilon)   [Terrible rate/order of convergence..]



Summing (45) over all iterations (since −
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< 0), we have

∑
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The ray6 and line search ensure that f(xi+1) ≤ f(xi) ∀i = 0, 1, . . . , k. We thus get

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤

x(0) − x∗

2

2tk

Thus, as k → ∞, f(xk) → f(x∗). This shows convergence for gradient descent.
What we are more interested in however, is the rate of convergence of the gradient
descent algorithm.

6By Armijo condition in (27), for some 0 < c1 < 1, f(xi+1) ≤ f(xi) + c1ti∇Tf(xi)∆xi
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Aside: Backtracking ray search and Lipschitz Continuity
Recap the Backtracking ray search algorithm

▶ Choose a β ∈ (0, 1)
▶ Start with t = 1
▶ While f(x + t∆x) > f(x) + c1t∇Tf(x)∆x, do

⋆ Update t ← βt
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Recap the Backtracking ray search algorithm

▶ Choose a β ∈ (0, 1)
▶ Start with t = 1
▶ While f(x + t∆x) > f(x) + c1t∇Tf(x)∆x, do

⋆ Update t ← βt

On convergence, f(x + t∆x) ≤ f(x) + c1t∇Tf(x)∆x
For gradient descent, this means f(x + t∆x) ≤ f(x)− c1t∥∇f(x)∥2
For a function f with Lipschitz continuous ∇f(x) we have that
f(xk+1) ≤ f(xk)− �t

2

∇f(xk)

2
is satisfied if bt = min

{
1,β 2(1−c1)

L

}

Reason: With backtracking step seach, if 1− Ltk
2 ≥ c1, the Armijo rule will be satisfied.

That is, 0 < tk ≤ 2(1−c1)
L
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⋆ Update t ← βt
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For gradient descent, this means f(x + t∆x) ≤ f(x)− c1t∥∇f(x)∥2
For a function f with Lipschitz continuous ∇f(x) we have that
f(xk+1) ≤ f(xk)− �t

2

∇f(xk)

2
is satisfied if bt = min

{
1,β 2(1−c1)

L

}

Reason: With backtracking step seach, if 1− Ltk
2 ≥ c1, the Armijo rule will be satisfied.

That is, 0 < tk ≤ 2(1−c1)
L =⇒ 1− Ltk

2 ≥ c1. If not, there must exist an interger j for
which β 2(1−c1)

L ≤ βj ≤ 2(1−c1)
L , we take bt = min

{
1,β 2(1−c1)

L

}
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Rates of Convergence

March 24, 2018 141 / 195



Convergence
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Order of convergence (generally Q convergence)

R (root) convergence and Q (quotient) convergence.. 

 



R-convergence

Let us consider the convergence result we got by assuming Lipschitz continuity with
backtracking and exact line searches:

f(xk)− f(x∗) ≤

x(0) − x∗

2

2tk
We will characterize this using R-convergence
‘R’ here stands for ‘root’, as we are looking at convergence rooted at x∗
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Q-convergence

We say that the sequence s1, . . . , sk is R-linearly convergent if
sk − s∗

 ≤ vk, ∀k, and
{
vk
}

converges Q-linearly to zero

v1, . . . , vk is Q-linearly convergent if
vk+1 − v∗


vk − v∗

 ≤ r

for some k ≥ θ, and r ∈ (0, 1)
▶ ‘Q’ here stands for ‘quotient’ of the norms as shown above
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R-convergence assuming Lipschitz continuity

Consider vk = ∥x(0)−x∗∥2

2tk = α
k , where α is a constant

Here, we have ∥vk+1−v∗∥
∥vk−v∗∥ ≤ K

K+1 , where K is the final number of iterations
▶ K
K+1 < 1, but we don’t have K

K+1 < r

Thus, vk = α
k is not Q-linearly convergent as there exist no v < 1 s.t.

α/(k+1)
α/k = k

k+1 ≤ v, ∀k ≥ θ

Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence
In practice, Lipschitz continuity gives “almost” R-linear convergence – not too bad!
We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is,
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R-convergence assuming Lipschitz continuity

Consider vk = ∥x(0)−x∗∥2

2tk = α
k , where α is a constant

Here, we have ∥vk+1−v∗∥
∥vk−v∗∥ ≤ K

K+1 , where K is the final number of iterations
▶ K
K+1 < 1, but we don’t have K

K+1 < r

Thus, vk = α
k is not Q-linearly convergent as there exist no v < 1 s.t.

α/(k+1)
α/k = k

k+1 ≤ v, ∀k ≥ θ

Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence
In practice, Lipschitz continuity gives “almost” R-linear convergence – not too bad!
We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is, to obtain f(xk)− f(x∗) ≤ ϵ, we need O(1ϵ ) iterations.
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Taking hint from this analysis, if Q-linear,
sk+1 − s∗


sk − s∗

 ≤ r ∈ (0, 1)

then,sk+1 − s∗
 ≤ r

sk − s∗


≤ r2
sk−1 − s∗


...
≤ rk

s(0) − s∗
, which is vk for R-linear

Thus, Q-linear convergence =⇒ R-linear convergence
▶ Q-linear is a special case of R-linear
▶ R-linear gives a more general way of characterizing linear convergence

Q-linear is an ‘order of convergence’
r is the ‘rate of convergence’
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We want to show convergence
that is as specific as 
possible



Q-superlinear convergence:

lim
k→∞

sk+1 − s∗


sk − s∗
2 = 0

Q-sublinear convergence:

lim
k→∞

sk+1 − s∗


sk − s∗
2 = 1

▶ e.g. For Lipschitz continuity, vk in gradient descent is Q-sublinear: limk→∞ k
k+1 = 1

Q-convergence of order p:

∀k ≥ θ,

sk+1 − s∗


sk − s∗
p ≤ M

▶ e.g. p = 2 for Q-quadratic, p = 3 for Q-cubic, etc.
▶ M is called the asymptotic error constant
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Illustrating Order Convergence
Consider the two sequences s1 and s2.
s1 =

[
11
2 ,

21
4 ,

41
8 , . . . , 5 +

1
2n , . . .

]

s2 =
[
11
2 ,

41
8 ,

641
128 , . . . , 5 +

1
22
n−1

, . . .
]

Both sequences converge to 5. However, it seems that the second converges faster to 5
than the first one.
For s1, s∗1 = 5 and Q-convergence is of order p = 1 because:

sk+1
1 − s∗1


sk1 − s∗1


1 =

 1
2k+1


 1
2k


=

1

2
< 0.6(= M)

For s2, s∗2 = 5 and Q-convergence is of order p = 2 because:
sk+1

2 − s∗2


sk2 − s∗2

2 =

 1

22k+1−1


 1

22
k−1


2 =

1

2
< 0.6(= M)
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Claim: Every element of s2 appears
in s1

Expect s2 to converge faster



Claim: Q-convergences of the order p are special cases of Q-superlinear convergence
∀k ≥ θ,
∥sk+1−s∗∥
∥sk−s∗∥p ≤ M

=⇒ lim
k→∞

sk+1 − s∗


sk − s∗
 ≤ lim

k→∞
M
sk − s∗


p−1

= 0

Therefore, irrespective of the value of M (as long as M ≥ 0), order p > 1 implies
Q-superlinear convergence
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Homework?



Question: Could we analyze Gradient descent more specifically?
Assume backtracking line search
Continue assuming Lipschitz continuity

▶ Curvature is upper bounded: ∇2f(x) ⪯ LI
Assume strong convexity

▶ Curvature is lower bounded: ∇2f(x) ⪰ mI
▶ For instance, we might not want to use gradient descent for a quadratic function (curvature

is not accounted for)
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There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See
http://xingyuzhou.org/blog/notes/Lipschitz-gradient for a quick summary!
(Better) Convergence Using Strong Convexity
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Second Order Conditions for Convexity

Theorem
A twice differential function f : D → ℜ for a nonempty open convex set D

1 is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite
at each point in D. That is ∇2f(x) ⪰ 0 ∀ x ∈ D

2 is strictly convex if its domain is convex and its Hessian matrix is positive definite at each
point in D. That is ∇2f(x) ≻ 0 ∀ x ∈ D

3 is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v ∈ ℜn and any x ∈ D, there exists
a c > 0 such that vT∇2f(x)v ≥ c||v||2
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Homework: Understand proofs



Proof of Second Order Conditions for Convexity
In other words

∇2f(x) ⪰ cIn×n
where In×n is the n× n identity matrix and ⪰ corresponds to the positive semidefinite
inequality. That is, the function f is strongly convex iff ∇2f(x)− cIn×n is positive semidefinite,
for all x ∈ D and for some constant c > 0, which corresponds to the positive minimum
curvature of f.
PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.
Necessity: Suppose f is a convex function, and consider a point x ∈ D. We will prove that for
any h ∈ ℜn, hT∇2f(x)h ≥ 0. Since f is convex, we have

f(x + th) ≥ f(x) + t∇Tf(x)h (46)

Consider the function ϕ(t) = f(x + th) defined on the domain Dϕ = [0, 1].
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

ϕ′(t) =
n∑

i=1

fxi(x + th)dxidt = hT.∇f(x + th)

Since f has partial and mixed partial derivatives, ϕ′ is a differentiable function of t on Dϕ and

ϕ′′(t) = hT∇2f(x + th)h

Since ϕ and ϕ′ are continous on Dϕ and ϕ′ is differentiable on int(Dϕ), we can make use of
the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives
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the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
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Writing this equation in terms of f gives

f(x + th) = f(x) + thT∇f(x) + t2 1
2
hT∇2f(x)h + O(t3)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (46), the above equation implies that

t2
2
hT∇2f(x)h + O(t3) ≥ 0

Dividing by t2 and taking limits as t → 0, we get

hT∇2f(x)h ≥ 0
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Proof of Second Order Conditions for Convexity (contd.)
Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x ∈ D.
Consider the same function ϕ(t) defined above with h = y− x for y,x ∈ D. Applying Taylor’s
theorem with n = 2 and a = 0, we obtain,

ϕ(1) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(c)

for some c ∈ (0, 1). Writing this equation in terms of f gives

f(x) = f(y) + (x − y)T∇f(y) + 1

2
(x − y)T∇2f(z)(x − y)

where z = y + c(x − y). Since D is convex, z ∈ D. Thus, ∇2f(z) ⪰ 0. It follows that

f(x) ≥ f(y) + (x − y)T∇f(y)

By a previous result, the function f is convex.
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